Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evolution ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517121

RESUMEN

Gene regulatory divergence is thought to play an important role in adaptation, yet its extent and underlying mechanisms remain largely elusive for local adaptation with gene flow. Local adaptation is widespread in marine species despite generally high connectivity and is often associated with tightly linked genomic architectures, such as chromosomal inversions. To investigate gene regulatory evolution under gene flow and the role of inversions associated with local adaptation to a steep thermal gradient, we generated RNA-seq data from Atlantic silversides (Menidia menidia) from two locally adapted populations and their F1 hybrids, reared under two temperatures. We found substantial divergence in gene expression and thermal plasticity between populations, with up to 31% of genes being differentially expressed. Reduced thermal plasticity, temperature-dependent gene misexpression and the disruption of co-expression networks in hybrids point towards a role of regulatory incompatibilities in local adaptation, particularly under colder temperatures. Chromosomal inversions show an accumulation of regulatory incompatibilities but are not consistently enriched for differentially expressed genes. Together, these results suggest that gene regulation can diverge substantially among populations despite gene flow, partly due to the accumulation of temperature-dependent regulatory incompatibilities within inversions.

2.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421099

RESUMEN

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Asunto(s)
Estudio de Asociación del Genoma Completo , Somatotipos , Animales , Trucha/genética , Genómica , Sitios de Carácter Cuantitativo/genética
5.
Mol Ecol ; 31(12): 3323-3341, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403755

RESUMEN

The role of recombination in genome evolution has long been studied in theory, but until recently empirical investigations had been limited to a small number of model species. Here, we compare the recombination landscape and genome collinearity between two populations of the Atlantic silverside (Menidia menidia), a small fish distributed across the steep latitudinal climate gradient of the North American Atlantic coast. We constructed separate linkage maps for locally adapted populations from New York and Georgia and their interpopulation laboratory cross. First, we used one of the linkage maps to improve the current silverside genome assembly by anchoring three large unplaced scaffolds to two chromosomes. Second, we estimated sex-specific recombination rates, finding 2.3-fold higher recombination rates in females than males-one of the most extreme examples of heterochiasmy in a fish. While recombination occurs relatively evenly across female chromosomes, it is restricted to only the terminal ends of male chromosomes. Furthermore, comparisons of female linkage maps revealed suppressed recombination along several massive chromosomal inversions spanning nearly 16% of the genome. These inversions segregate between locally adapted populations and coincide near perfectly with blocks of highly elevated genomic differentiation between wild populations. Finally, we discerned significantly higher recombination rates across chromosomes in the northern population compared to the southern. In addition to providing valuable resources for ongoing evolutionary and comparative genomic studies, our findings represent a striking example of structural variation that impacts recombination between adaptively divergent populations, providing empirical support for theorized genomic mechanisms facilitating adaptation despite gene flow.


Asunto(s)
Inversión Cromosómica , Recombinación Genética , Animales , Inversión Cromosómica/genética , Mapeo Cromosómico , Femenino , Peces , Ligamiento Genético , Genoma/genética , Masculino , Recombinación Genética/genética
6.
PLoS Genet ; 18(2): e1010019, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120121

RESUMEN

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/genética , Rhodnius/genética , Adaptación Biológica/genética , Animales , Vectores de Enfermedades , Ecosistema , Ecuador/epidemiología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Flujo Génico , Insectos Vectores/genética , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Rhodnius/patogenicidad , Transcriptoma/genética , Trypanosoma cruzi/genética
7.
Trends Ecol Evol ; 37(4): 299-308, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34920907

RESUMEN

Regulation of gene expression plays a central role in adaptive divergence and evolution. Although the role of gene regulation in microevolutionary processes is gaining wide acceptance, most studies have only investigated the evolution of transcript levels, ignoring the potentially significant role of transcript structures. We argue that variation in alternative splicing plays an important and widely unexplored role in adaptation (e.g., by increasing transcriptome and/or proteome diversity, or buffering potentially deleterious genetic variation). New studies increasingly highlight the potential for independent evolution in alternative splicing and transcript level, providing alternative paths for selection to act upon. We propose that alternative splicing and transcript levels can provide contrasting, nonredundant mechanisms of equal importance for adaptive diversification of gene function and regulation.


Asunto(s)
Adaptación Fisiológica , Empalme Alternativo , Aclimatación , Adaptación Fisiológica/genética , Evolución Molecular , Fenotipo
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903645

RESUMEN

Fisheries induce one of the strongest anthropogenic selective pressures on natural populations, but the genetic effects of fishing remain unclear. Crucially, we lack knowledge of how capture-associated selection and its interaction with reductions in population density caused by fishing can potentially shift which genes are under selection. Using experimental fish reared at two densities and repeatedly harvested by simulated trawling, we show consistent phenotypic selection on growth, metabolism, and social behavior regardless of density. However, the specific genes under selection-mainly related to brain function and neurogenesis-varied with the population density. This interaction between direct fishing selection and density could fundamentally alter the genomic responses to harvest. The evolutionary consequences of fishing are therefore likely context dependent, possibly varying as exploited populations decline. These results highlight the need to consider environmental factors when predicting effects of human-induced selection and evolution.


Asunto(s)
Explotaciones Pesqueras , Rasgos de la Historia de Vida , Selección Genética , Agresión , Animales , Metabolismo Energético/genética , Femenino , Estudios de Asociación Genética , Genoma , Masculino , Fenotipo , Densidad de Población , Pez Cebra
9.
Mol Ecol ; 30(23): 5966-5993, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34250668

RESUMEN

Low-coverage whole genome sequencing (lcWGS) has emerged as a powerful and cost-effective approach for population genomic studies in both model and nonmodel species. However, with read depths too low to confidently call individual genotypes, lcWGS requires specialized analysis tools that explicitly account for genotype uncertainty. A growing number of such tools have become available, but it can be difficult to get an overview of what types of analyses can be performed reliably with lcWGS data, and how the distribution of sequencing effort between the number of samples analysed and per-sample sequencing depths affects inference accuracy. In this introductory guide to lcWGS, we first illustrate how the per-sample cost for lcWGS is now comparable to RAD-seq and Pool-seq in many systems. We then provide an overview of software packages that explicitly account for genotype uncertainty in different types of population genomic inference. Next, we use both simulated and empirical data to assess the accuracy of allele frequency, genetic diversity, and linkage disequilibrium estimation, detection of population structure, and selection scans under different sequencing strategies. Our results show that spreading a given amount of sequencing effort across more samples with lower depth per sample consistently improves the accuracy of most types of inference, with a few notable exceptions. Finally, we assess the potential for using imputation to bolster inference from lcWGS data in nonmodel species, and discuss current limitations and future perspectives for lcWGS-based population genomics research. With this overview, we hope to make lcWGS more approachable and stimulate its broader adoption.


Asunto(s)
Metagenómica , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Genómica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
11.
Genome Biol Evol ; 13(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964136

RESUMEN

The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.


Asunto(s)
Peces/genética , Genoma , Variación Estructural del Genoma , Animales , Variación Genética , Oryzias/genética , Sintenía
12.
Nat Commun ; 12(1): 2983, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016968

RESUMEN

Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment. Yet, the genetic changes and genomic architecture underlying these adaptations are poorly understood. Here, we genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent rural site, to address this major knowledge gap in our understanding of wildlife urban adaptation. We find that a combination of polygenic allele frequency shifts and recurrent selective sweeps are associated with the adaptation of great tits to urban environments. While haplotypes under selection are rarely shared across urban populations, selective sweeps occur within the same genes, mostly linked to neural function and development. Collectively, we show that urban adaptation in a widespread songbird occurs through unique and shared selective sweeps in a core-set of behaviour-linked genes.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Passeriformes/fisiología , Selección Genética , Urbanización , Distribución Animal , Animales , Ciudades , Europa (Continente) , Frecuencia de los Genes
13.
Evol Appl ; 14(1): 85-98, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33519958

RESUMEN

Urbanization represents a fierce driver of phenotypic change, yet the molecular mechanisms underlying observed phenotypic patterns are poorly understood. Epigenetic changes are expected to facilitate more rapid adaption to changing or novel environments, such as our towns and cities, compared with slow changes in gene sequence. A comparison of liver and blood tissue from great tits Parus major originating from an urban and a forest site demonstrated that urbanization is associated with variation in genome-wide patterns of DNA methylation. Combining reduced representation bisulphite sequencing with transcriptome data, we revealed habitat differences in DNA methylation patterns that suggest a regulated and coordinated response to the urban environment. In the liver, genomic sites that were differentially methylated between urban- and forest-dwelling birds were over-represented in regulatory regions of the genome and more likely to occur in expressed genes. DNA methylation levels were also inversely correlated with gene expression at transcription start sites. Furthermore, differentially methylated CpG sites, in liver, were over-represented in pathways involved in (i) steroid biosynthesis, (ii) superoxide metabolism, (iii) secondary alcohol metabolism, (iv) chylomicron remodelling, (v) cholesterol transport, (vi) reactive oxygen species (ROS) metabolic process and (vii) epithelial cell proliferation. This corresponds with earlier studies identifying diet and exposure to ROS as two of the main drivers of divergence between organisms in urban and nonurban environments. Conversely, in blood, sites that were differentially methylated between urban- and forest-dwelling birds were under-represented in regulatory regions, more likely to occur in nonexpressed genes and not over-represented in specific biological pathways. It remains to be determined whether diverging patterns of DNA methylation represent adaptive evolutionary responses and whether the conclusions can be more widely attributed to urbanization.

14.
Commun Biol ; 4(1): 139, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514858

RESUMEN

Leishmania infantum causes visceral leishmaniasis, a deadly vector-borne disease introduced to the Americas during the colonial era. This non-native trypanosomatid parasite has since established widespread transmission cycles using alternative vectors, and human infection has become a significant concern to public health, especially in Brazil. A multi-kilobase deletion was recently detected in Brazilian L. infantum genomes and is suggested to reduce susceptibility to the anti-leishmanial drug miltefosine. We show that deletion-carrying strains occur in at least 15 Brazilian states and describe diversity patterns suggesting that these derive from common ancestral mutants rather than from recurrent independent mutation events. We also show that the deleted locus and associated enzymatic activity is restored by hybridization with non-deletion type strains. Genetic exchange appears common in areas of secondary contact but also among closely related parasites. We examine demographic and ecological scenarios underlying this complex L. infantum population structure and discuss implications for disease control.


Asunto(s)
ADN Protozoario/genética , Evolución Molecular , Genes Protozoarios , Genoma de Protozoos , Leishmania infantum/genética , Leishmaniasis Visceral/parasitología , Brasil/epidemiología , Eliminación de Gen , Leishmania infantum/patogenicidad , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Epidemiología Molecular , Filogenia , Eliminación de Secuencia , Secuenciación Completa del Genoma
15.
Mol Ecol ; 30(20): 4955-4969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502030

RESUMEN

Understanding the contribution of different molecular processes to evolution and development is crucial for identifying the mechanisms of adaptation. Here, we used RNA-sequencing data to test the importance of alternative splicing and differential gene expression in a case of parallel adaptive evolution, the replicated postglacial divergence of the salmonid fish Arctic charr (Salvelinus alpinus) into sympatric benthic and pelagic ecotypes across multiple independent lakes. We found that genes differentially spliced between ecotypes were mostly not differentially expressed (<6% overlap) and were involved in different biological processes. Differentially spliced genes were primarily enriched for muscle development and functioning, while differentially expressed genes were involved in metabolism, immunity and growth. Furthermore, alternative splicing and gene expression were mostly controlled by independent cis-regulatory quantitative trait loci (<3.4% overlap). Cis-regulatory regions were associated with the parallel divergence in splicing (16.5% of intron clusters) and expression (6.7%-10.1% of differentially expressed genes), indicating shared regulatory variation across ecotype pairs. Contrary to theoretical expectation, we found that differentially spliced genes tended to be highly central in regulatory networks ("hub genes") and were annotated to significantly more gene ontology terms compared to nondifferentially spliced genes, consistent with a higher level of pleiotropy. Together, our results suggest that the concerted regulation of alternative splicing and differential gene expression through different regulatory regions leads to the divergence of complementary processes important for local adaptation. This provides novel insights into the importance of contrasting but putatively complementary molecular processes in rapid parallel adaptive evolution.


Asunto(s)
Empalme Alternativo , Salmonidae , Empalme Alternativo/genética , Animales , Ecotipo , Expresión Génica , Salmonidae/genética , Simpatría
16.
PLoS Genet ; 16(4): e1008658, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302300

RESUMEN

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.


Asunto(s)
Ecotipo , Evolución Molecular , Peces/anatomía & histología , Peces/genética , Expresión Génica , Variación Genética , Genoma/genética , Animales , Ecología , Femenino , Flujo Genético , Especiación Genética , Genética de Población , Genómica , Masculino , Simpatría
17.
Mol Ecol ; 29(7): 1284-1299, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32159878

RESUMEN

Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs-ancestral black-yellow striped, fully yellow and fully brown-differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype-phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and 'omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.


Asunto(s)
Evolución Biológica , Genética de Población , Pigmentación de la Piel/genética , Urodelos/genética , Animales , Color , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Piel , España
18.
Mol Ecol ; 28(14): 3287-3290, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31379095

RESUMEN

Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue of Molecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct "ghost" lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost-effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field.


Asunto(s)
Genoma , Filogenia , Animales , Flujo Génico , Genética de Población , Geografía , Humanos , Orca/genética
19.
Nat Ecol Evol ; 3(1): 77-86, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510178

RESUMEN

It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Salmonidae , Animales , Evolución Molecular , Femenino , Expresión Génica , Genómica , Genotipo , Masculino , Fenotipo , Salmonidae/anatomía & histología , Salmonidae/genética
20.
Genes (Basel) ; 9(6)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29857499

RESUMEN

Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout (Salmo trutta) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...